332 research outputs found

    Стабилизация движения робота по показаниям электронного компаса

    Get PDF
    Laser-induced breakdown spectroscopy has been applied to polymer samples in order to investigate the possibility of using this method for the identification of different materials. The plasma emission spectra of high-density polyethylene (HDPE), low-density polyethylene (LDPE), polyvinyl chloride (PVC), polyethylene terephthylene (PET), and polypropylene (PP) have been studied. Spectral features have been measured - for example, the 725.7 nm chlorine line, the 486.13 mm H(?) line, and the 247.86 nm carbon line - whose evaluation with neural networks permits identification accuracies between 90 and 1 00 per cent, depending on polymer type

    Chemical composition and antioxidant activity of phenolic extracts from peanut skins obtained by different industrial process

    Get PDF
    Peanut skins present phenolic compounds with antioxidant properties which are excellent as a source of natural antioxidants. In food products, the antioxidants have the function ofneutralizedthe action of free radicals produced by oxidation reactions. The objective of this study was to determine the chemical composition and antioxidant activity of extracts rich in phenolic compounds form peanut skins obtained by two industrial process.Fil: Larrauri, Mariana. Universidad Nacional de Córdoba. Facultad de Ciencias Agropecuarias; Argentina.Fil: Larrauri, Mariana. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Multidisciplinario de Biología Vegetal; Argentina.Fil: Asensio, Claudia M. Universidad Nacional de Córdoba. Facultad de Ciencias Agropecuarias; Argentina.Fil: Asensio, Claudia M. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Multidisciplinario de Biología Vegetal; Argentina.Fil: Martín, María Paula. Universidad Nacional de Córdoba. Facultad de Ciencias Agropecuarias; Argentina.Fil: Martín, María Paula. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Multidisciplinario de Biología Vegetal; Argentina.Fil: Zunino, M. Paula. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Instituto de Ciencia y Tecnología de los Alimentos; Argentina.Fil: Zunino, M. Paula. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Multidisciplinario de Biología Vegetal; Argentina.Fil: Zygadlo, Julio A. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Instituto de Ciencia y Tecnología de los Alimentos; Argentina.Fil: Zygadlo, Julio A. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Multidisciplinario de Biología Vegetal; Argentina.Fil: Grosso, Nelson R. Universidad Nacional de Córdoba. Facultad de Ciencias Agropecuarias; Argentina.Fil: Grosso, Nelson R. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Multidisciplinario de Biología Vegetal; Argentina.Fil: Nepote, Valeria. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Instituto de Ciencia y Tecnología de los Alimentos; Argentina.Fil: Nepote, Valeria. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Multidisciplinario de Biología Vegetal; Argentina.Otras Ciencias Agrícola

    Season-ahead forecasting of water storage and irrigation requirements – an application to the southwest monsoon in India

    Get PDF
    Water risk management is a ubiquitous challenge faced by stakeholders in the water or agricultural sector. We present a methodological framework for forecasting water storage requirements and present an application of this methodology to risk assessment in India. The application focused on forecasting crop water stress for potatoes grown during the monsoon season in the Satara district of Maharashtra. Pre-season large-scale climate predictors used to forecast water stress were selected based on an exhaustive search method that evaluates for highest ranked probability skill score and lowest root-mean-squared error in a leave-one-out cross-validation mode. Adaptive forecasts were made in the years 2001 to 2013 using the identified predictors and a non-parametric k-nearest neighbors approach. The accuracy of the adaptive forecasts (2001–2013) was judged based on directional concordance and contingency metrics such as hit/miss rate and false alarms. Based on these criteria, our forecasts were correct 9 out of 13 times, with two misses and two false alarms. The results of these drought forecasts were compared with precipitation forecasts from the Indian Meteorological Department (IMD). We assert that it is necessary to couple informative water stress indices with an effective forecasting methodology to maximize the utility of such indices, thereby optimizing water management decisions.</p

    I-Move towards monitoring seasonal and pandemic influenza vaccine effectiveness: lessons learnt from a pilot multi-centric case-control study in europe, 2008-9

    Get PDF
    Within I-MOVE (European programme to monitor seasonal and pandemic influenza vaccine effectiveness (IVE)) five countries conducted IVE pilot case-control studies in 2008-9. One hundred and sixty sentinel general practitioners (GP) swabbed all elderly consulting for influenza-like illness (ILI). Influenza confirmed cases were compared to influenza negative controls. We conducted a pooled analysis to obtain a summary IVE in the age group of >or=65 years. We measured IVE in each study and assessed heterogeneity between studies qualitatively and using the I2 index. We used a one-stage pooled model with study as a fixed effect. We adjusted estimates for age-group, sex, chronic diseases, smoking, functional status, previous influenza vaccinations and previous hospitalisations. The pooled analysis included 138 cases and 189 test-negative controls. There was no statistical heterogeneity (I2=0) between studies but ILI case definition, previous hospitalisations and functional status were slightly different. The adjusted IVE was 59.1% (95% CI: 15.3-80.3%). IVE was 65.4% (95% CI: 15.6-85.8%) in the 65-74, 59.6% (95% CI: -72.6 -90.6%) in the age group of >or=75 and 56.4% (95% CI: -0.2-81.3%) for A(H3). Pooled analysis is feasible among European studies. The variables definitions need further standardisation. Larger sample sizes are needed to achieve greater precision for subgroup analysis. For 2009-10, I-MOVE will extend the study to obtain early IVE estimates in groups targeted for pandemic H1N1 influenza vaccination.European Centre for Disease Prevention and Control (ECDC

    Effectiveness of mRNA vaccine boosters against infection with the SARS-CoV-2 omicron (B.1.1.529) variant in Spain: a nationwide cohort study

    Get PDF
    Factor de impacto: 25,71 Q1Background: The omicron (B.1.1.529) variant of SARS-CoV-2 has increased capacity to elude immunity and cause breakthrough infections. The aim of this study was to estimate the effectiveness of mRNA-based vaccine boosters (third dose) against infection with the omicron variant by age, sex, time since complete vaccination, type of primary vaccine, and type of booster. Methods: In this nationwide cohort study, we linked data from three nationwide population registries in Spain (Vaccination Registry, Laboratory Results Registry, and National Health System registry) to select community-dwelling individuals aged 40 years or older, who completed their primary vaccine schedule at least 3 months before the start of follow-up, and had not tested positive for SARS-CoV-2 since the start of the pandemic. On each day between Jan 3, and Feb 6, 2022, we matched individuals who received a booster mRNA vaccine and controls of the same sex, age group, postal code, type of vaccine, time since primary vaccination, and number of previous tests. We estimated risk of laboratory-confirmed SARS-CoV-2 infection using the Kaplan-Meier method and compared groups using risk ratios (RR) and risk differences. Vaccine effectiveness was calculated as one minus RR. Findings: Between Jan 3, and Feb 6, 2022, 3 111 159 matched pairs were included in our study. Overall, the estimated effectiveness from day 7 to 34 after a booster was 51·3% (95% CI 50·2-52·4). Estimated effectiveness was 52·5% (51·3-53·7) for an mRNA-1273 booster and 46·2% (43·5-48·7) for a BNT162b2 booster. Effectiveness was 58·6% (55·5-61·6) if primary vaccination had been with ChAdOx1 nCoV-19 (Oxford-AstraZeneca), 55·3% (52·3-58·2) with mRNA-1273 (Moderna), 49·7% (48·3-51·1) with BNT162b2 (Pfizer-BioNTech), and 48·0% (42·5-53·7) with Ad26.COV2.S (Janssen). Estimated effectiveness was 43·6% (40·0-47·1) when the booster was administered between 151 days and 180 days after complete vaccination and 52·2% (51·0-53·3) if administered more than 180 days after primary scheduled completion. Interpretation: Booster mRNA vaccine-doses were moderately effective in preventing infection with the omicron variant of SARS-CoV-2 for over a month after administration, which indicates their suitability as a strategy to limit the health effects of COVID-19 in periods of omicron variant domination. Estimated effectiveness was higher for mRNA-1273 compared with BNT162b2 and increased with time between completed primary vaccination and booster.S

    Lockdown measures and relative changes in the age-specific incidence of SARS-CoV-2 in Spain

    Get PDF
    During the first months of the SARS-CoV-2 epidemic in 2020, Spain implemented an initial lockdown period on March 15 followed by a strengthened lockdown period on March 30 when only essential workers continued to commute to work. However, little is known about the epidemic dynamics in different age groups during these periods. We used the daily number of COVID-19 cases (by date of symptom onset) reported to the National Epidemiological Surveillance Network (RENAVE) among individuals aged 15-19y through 65-69y. For each age group g, we computed the proportion PrE(g) of individuals in age group g among all reported cases aged 15-69y during the pre-lockdown period (March 1-10, 2020) and the corresponding proportion PrL(g) during two lockdown periods (initial: 25 March-3 April; strengthened: 8-17 April, 2020). For each lockdown period, we computed the proportion ratios PR(g)= PrL(g)/PrE(g). For each pair of age groups g1,g, PR(g)>PR(g) implies a relative increase in the incidence of detected SARS-CoV-2 infection in the age group g compared with g for the lockdown period vs. the pre-lockdown period. For the initial lockdown period, the highest PR values were in age groups 50-54y (PR=1.21; 95% CI: 1.12,1.30) and 55-59y (PR=1.19; 1.11,1.27). For the second lockdown period, the highest PR values were in age groups 15-19y (PR=1.26; 0.95,1.68) and 50-54y (PR=1.20; 1.09,1.31). Our results suggest that different outbreak control measures led to different changes in the relative incidence by age group. During the initial lockdown period, when non-essential work was allowed, individuals aged 40-64y, particularly those aged 50-59y, had a higher relative incidence compared with the pre-lockdown period. Younger adults/older adolescents had an increased relative incidence during the later, strengthened lockdown. The role of different age groups during the epidemic should be considered when implementing future mitigation efforts

    Using surveillance data to estimate pandemic vaccine effectiveness against laboratory confirmed influenza A(H1N1)2009 infection : two case-control studies, Spain, season 2009-2010

    Get PDF
    Background: Physicians of the Spanish Influenza Sentinel Surveillance System report and systematically swab patients attended to their practices for influenza-like illness (ILI). Within the surveillance system, some Spanish regions also participated in an observational study aiming at estimating influenza vaccine effectiveness (cycEVA study). During the season 2009-2010, we estimated pandemic influenza vaccine effectiveness using both the influenza surveillance data and the cycEVA study. Methods: We conducted two case-control studies using the test-negative design, between weeks 48/2009 and 8/2010 of the pandemic season. The surveillance-based study included all swabbed patients in the sentinel surveillance system. The cycEVA study included swabbed patients from seven Spanish regions. Cases were laboratory-confirmed pandemic influenza A(H1N1)2009. Controls were ILI patients testing negative for any type of influenza. Variables collected in both studies included demographic data, vaccination status, laboratory results, chronic conditions, and pregnancy. Additionally, cycEVA questionnaire collected data on previous influenza vaccination, smoking, functional status, hospitalisations, visits to the general practitioners, and obesity. We used logistic regression to calculate adjusted odds ratios (OR), computing pandemic influenza vaccine effectiveness as (1-OR *100. Results: We included 331 cases and 995 controls in the surveillance-based study and 85 cases and 351 controls in the cycEVA study. We detected nine (2.7%) and two (2.4%) vaccine failures in the surveillance-based and cycEVA studies, respectively. Adjusting for variables collected in surveillance database and swabbing month, pandemic influenza vaccine effectiveness was 62% (95% confidence interval (CI): -5; 87). The cycEVA vaccine effectiveness was 64% (95%CI: -225; 96) when adjusting for common variables with the surveillance system and 75% (95%CI: -293; 98) adjusting for all variables collected. Conclusion: Point estimates of the pandemic influenza vaccine effectiveness suggested a protective effect of the pandemic vaccine against laboratory-confirmed influenza A(H1N1)2009 in the season 2009-2010. Both studies were limited by the low vaccine coverage and the late start of the vaccination campaign. Routine influenza surveillance provides reliable estimates and could be used for influenza vaccine effectiveness studies in future seasons taken into account the surveillance system limitations

    All-cause versus cause-specific excess deaths for estimating influenza-associated mortality in Denmark, Spain, and the United States

    Get PDF
    Background: Seasonal influenza-associated excess mortality estimates can be timely and provide useful information on the severity of an epidemic. This methodology can be leveraged during an emergency response or pandemic. Method: For Denmark, Spain, and the United States, we estimated age-stratified excess mortality for (i) all-cause, (ii) respiratory and circulatory, (iii) circulatory, (iv) respiratory, and (v) pneumonia, and influenza causes of death for the 2015/2016 and 2016/2017 influenza seasons. We quantified differences between the countries and seasonal excess mortality estimates and the death categories. We used a time-series linear regression model accounting for time and seasonal trends using mortality data from 2010 through 2017. Results: The respective periods of weekly excess mortality for all-cause and cause-specific deaths were similar in their chronological patterns. Seasonal all-cause excess mortality rates for the 2015/2016 and 2016/2017 influenza seasons were 4.7 (3.3-6.1) and 14.3 (13.0-15.6) per 100,000 population, for the United States; 20.3 (15.8-25.0) and 24.0 (19.3-28.7) per 100,000 population for Denmark; and 22.9 (18.9-26.9) and 52.9 (49.1-56.8) per 100,000 population for Spain. Seasonal respiratory and circulatory excess mortality estimates were two to three times lower than the all-cause estimates. Discussion: We observed fewer influenza-associated deaths when we examined cause-specific death categories compared with all-cause deaths and observed the same trends in peaks in deaths with all death causes. Because all-cause deaths are more available, these models can be used to monitor virus activity in near real time. This approach may contribute to the development of timely mortality monitoring systems during public health emergencies.This study was conducted as part of Sebastian Schmidt's research fellowship, which was financially supported by the Novo Nordic Foundation and A.P. Møller Fonden. The EuroMOMO network has received financial support from the European Centre for Disease Prevention and Control (ECDC) and from the World Health Organization (WHO) Regional Office for Europe.S

    Low and decreasing vaccine effectiveness against influenza A(H3) in 2011/12 among vaccination target groups in Europe: results from the I-MOVE multicentre case-control study

    Get PDF
    Within the Influenza Monitoring Vaccine Effectiveness in Europe (I-MOVE) project we conducted a multicentre case–control study in eight European Union (EU) Member States to estimate the 2011/12 influenza vaccine effectiveness against medically attended influenza-like illness (ILI) laboratory-confirmed as influenza A(H3) among the vaccination target groups. Practitioners systematically selected ILI / acute respiratory infection patients to swab within seven days of symptom onset. We restricted the study population to those meeting the EU ILI case definition and compared influenza A(H3) positive to influenza laboratory-negative patients. We used logistic regression with study site as fixed effect and calculated adjusted influenza vaccine effectiveness (IVE), controlling for potential confounders (age group, sex, month of symptom onset, chronic diseases and related hospitalisations, number of practitioner visits in the previous year). Adjusted IVE was 25% (95% confidence intervals (CI): -6 to 47) among all ages (n=1,014), 63% (95% CI: 26 to 82) in adults aged between 15 and 59 years and 15% (95% CI: -33 to 46) among those aged 60 years and above. Adjusted IVE was 38% (95%CI: -8 to 65) in the early influenza season (up to week 6 of 2012) and -1% (95% CI: -60 to 37) in the late phase. The results suggested a low adjusted IVE in 2011/12. The lower IVE in the late season could be due to virus changes through the season or waning immunity. Virological surveillance should be enhanced to quantify change over time and understand its relation with duration of immunological protection. Seasonal influenza vaccines should be improved to achieve acceptable levels of protection.ECD

    Excess mortality among the elderly in european countries, December 2014 to February 2015

    Get PDF
    Since December 2014 and up to February 2015, the weekly number of excess deaths from all-causes among individuals ≥ 65 years of age in 14 European countries have been significantly higher than in the four previous winter seasons. The rise in unspecified excess mortality coincides with increased proportion of influenza detection in the European influenza surveillance schemes with a main predominance of influenza A(H3N2) viruses seen throughout Europe in the current season, though cold snaps and other respiratory infections may also have had an effect
    corecore